AGEO presented at the “Future of Science Communication Conference”

The Future of Science Communication Conference was held on the 24 and 25 June, online. The conference brought together European actors from research and practice of science communication. And LPRC joined to learn and share its views on science communication.

For this event, the LPRC team took the chance to present AGEO. This INTERREG Atlantic project was presented in the poster session of the 25 June, where Ariadna Ortega talked about the project’s tasks and contributions to Science Communication in the Atlantic region and why its results in specific and science communication at large are important.

The AGEO poster for the Future of Science Communication Conference

The presentation can be seen here. AGEO can be discussed until the end of July, so feel free to contribute!

LPRC presents its work during INTERMIN’s Final Conference

The INTERMIN project held its Final Conference on the 22nd of June 2021. The project, set to finish this June, worked on the creation of a network of raw materials training centres.

The final meeting had three main components: 1) presentations of the work done in each Work Package, 2) presentations by project representatives of INTERMIN related EU H2020 funded raw materials projects, 3) a stakeholders’ debate and 4) a discussion on the vision of the future of education and skills in the raw materials sector.

LPRC was a major player of this Final Conference at two moments: first, Luís Lopes presented LPRC’s work done on Work Package 2, in which Skills and competences gaps for the current and future of the raw materials sector were identified.

Luís Lopes (LPRC) presented the results on the skills and competences gaps for the raw materials sector (WP2).

Later, Márcio Tameirão presented the MOBI-US project, which has a clear connection with INTERMIN by using the latter’s skills and competences needs analysis to create MOBI-US mobility pathways according to the demand from the sector. The main objective of MOBI-US project is to set up a structured mobility network between raw materials-related higher education programs in four ESEE institutions (East & South-East Europe), and INTERMIN was an important input in this process, mainly for the role of LPRC in MOBI-US – Mentoring (WP4). Márcio also took part in the stakeholders’ debate, defending the MOBI-US perspective.

Márcio Tameirão (LPRC) presented the MOBI-US project, which has common points with INTERMIN.

Finally, the presentations made by African, North and South American and Asian representatives of the raw materials value chain showed how the skills and gaps in those areas of the globe are evolving.

The next steps include the adminstrative and technical wrap-up of INTERMIN which will take place during the summer, up to the moment of the project’s final review, to be held later in September.

LPRC contributes to the MOBI-US Training event – Part 1

The MOBI-US project has reached one more important milestone on the 18th of June 2021: the successful conclusion of MOBI-US Training event, Part 1. The objective of this online meeting was to gather representatives of other faculties and universities that offer raw materials-related higher education programs – from the ESEE region – to present some of MOBI-US’ results. The talks also mentioned the lessons learned, best-practices, and the guidelines that the consortium elaborated for an effective implementation of student mobilities. The main idea is to support and foster the development of more mobility programs and projects in the region, which will strengthen the higher education in this sector.

The MOBI-US training banner.

One of the speakers of the event was LPRC’s Luís Lopes who provided a presentation on “Competence criteria for raw materials programs, lessons from the INTERMIN project”. The talk covered the important role of education due to the uptake of new technologies, methods and tools that are used in the raw materials value chain, in order to build a stronger workforce that is adapted to the current and future market needs in the sector. In addition, he provided the main conclusions from the foresight analysis that LPRC conducted during the INTERMIN Project, presenting the skills and competences gaps in the mining sector.

Luís Lopes presenting the results of the foresight analysis of skills and competences gaps for the raw materials sector.

A total of 54 attendees had the opportunity to learn and interact with the presenters from MOBI-US consortium, as well as the guest speakers. The talks generated interest and engagement with the audience, which are crucial for the uptake of further cooperation between institutions and – consequently – the development of more mobility opportunities.

MOBI-US project – Join the Training Staff event!

On the 18th June 2021 the MOBI-US project will host a training event – online – specially dedicated to representatives of faculties and universities in the ESEE (East & South-East Europe) region that offer raw materials-related master’s programs.

The main purpose of the first part of the training is to transfer the knowledge and experiences acquired by the consortium during the MOBI-US project, focusing on the guidelines and preparation procedures to set up a structured mobility network between institutions, considering the demand in skills to fulfill the industry needs. In addition, the consortium will present the achievements within the project. The overall content of the event will be the following:

  • Achievements of the first year of the MOBI-US project
  • Benefits and issues in setting up a structured mobility at your HEI
  • Skills and competences required by the raw materials sector
  • Student mobility options and competence needs in the post-COVID period

In addition, guest speakers will provide insights on the changes and adaptations that the post-COVID world will potentially face. The context will be focused on student mobility, raw materials policy, and changes in the skills and competence requirements in the raw materials sector:

  1. Márton Beke, Tempus Public Foundation: Structure and options for the future of student mobilities
  2. Vitor Correia, INTRAW (International Raw Materials Observatory): Expected changes in the competence requirements for education programs in the raw materials sector post-COVID
  3. Manuel Regueiro, IGME (Geological and Mining Institute of Spain): Changes in the EU raw materials policy post-COVID

After the presentations and discussions, the participants will receive a “homework” to be completed over the summer and presented in the second part of the Training event in September 2021. This follow-up will work around using the insights and tools acquired during the first event to check the internal resources of their home institutions to be able to offer mobility opportunities to students – administration, staff, facilities, and more.

The objective of the Training event (parts 1 and 2) is to support and foster the uptake of structured mobility opportunities for students in ESEE institutions, to strengthen the higher education in raw materials in the region through cooperation.


Retrieved from:

LPRC joins the Baseload Capital Online Seminar #3: Geothermal and Risks (part 2)

Drilling risks

The key to the economies of scale in geothermal is to reduce uncertainty whilst drilling linked to poorly known geology. On average, 66% of deep geothermal drillings are successful. This low rate can be explained by the uncertainty of geothermal drilling. A profitable geothermal field, on paper, may not translate to real profitable margins. There is a risk that the well fails on the first heat up or that there is a delayed failure due to the formation environment like the presence of corrosive fluids. When a failure occurs, the loss of production and cost of repair can be quite significant compared with the cost of completing the well. Current technologies offer two solutions to drilling risks:  horizontal wells and drilling deeper:

  1. Horizontal wells do not rely on a limited amount of energy stored within the direct vicinity of a vertical well. A horizontal well can be drilled for thousands of meters in the ideal reservoir alleviating the risk of a colder spot and thus reducing the risks of an unproductive well.
  2. The other solution is to drill deeper in basement rock. This method aims at using hot dry rock at depth to produce heat. At high depth (more than 5000m), the rock layers become more consistent thus creating more certainty whilst drilling. In addition, deeper wells tap into warmer rocks thus producing high temperature for a more profitable process.

NIMBY (not in my backyard): stories from the field

Even if economically sound, a geothermal project can be cancelled if local communities oppose it. In Taiwan, Baseload Capital faced a challenge: Initially favorable to geothermal energy, local turned against the project when they witness the noise, dust and smell caused by the drillings. The problem lied in miscommunication between the company in the communities. Communities had a lack of knowledge vis-à-vis geothermal power, in addition they were afraid that the power plant would bring harm such as water depletion and pollution. Given the relative remoteness of the local communities, there was also a distrust of a company they had never seen before.

Although these problematics can seem futile to people with deep understanding in geothermal, it is necessary to take a step back and listen to these divergent opinions. Without this, a project can very quickly create massive backlash and even be cancelled. Based on this, a geothermal project shall generally follow the following steps when dealing with local communities:

  1. Become trustworthy: Outline clearly the how the project will work at meetings with locals. Never take anything for granted and act on your promises.
  2. Be respectful of local communities by being present when they have questions, arranged face-to-face meetings, listen to their concerns, learn about the local cultures and respect local habits.
  3. Be transparent. Being transparent is vital to earn trust. This can be performed by hosting local hearing to understand complains and misconceptions. These meetings should always be about dialogue and never be one-sided. It is also important to show progress and discuss future plans.
  4. Get involved in the local community be celebrating events with them. Geothermal should have a strong community focus in its operation (using hot water for local businesses and ensuring that the plant will create jobs locally. Any geothermal project shall participate to the local economy and be an active member of the society.


The Covid-19 pandemic showed how quickly the market can adapt to new needs. Within a year time, millions of masks, PPE and vaccines have been produced to respond to a disease that can affect us all. Climate affect us all too. The real risk of climate action, the one we are all confronted is inaction. Inaction in the climate transition will threaten biodiversity, as habitats and lives become endangered. We need to act, and we need to act fast.

Geothermal energy involves taking risks. However, as shown in this article these risks can be alleviated if projects are managed in a transparent and responsible manner. The battle will be won or loss in the next decade. If we fail to transition to a sustainable global economy, it is estimated that global GDP will plumet by 11%. However, if we succeed it will rise by 4%, showcasing a bright light at the end of a challenging time.

LPRC joins the Baseload Capital Online Seminar #3: Geothermal and Risks (part 1)

On the 3rd June 2021, Baseload Capital (Swedish investment bank specialised in sustainable energy) hosted its 3rd online seminar session of the year, this time on risks within the geothermal industry. Specifically, the day’s session tackled risks across various inter-linked topics: environmental risks, drilling and social acceptance.

Environmental risks

Environmental risks although real can be either overrated or underrated based on preconceptions or past assessment which do not hold in the current state-of-the art. The first environmental risk assessed was the one linked to CO2 in geothermal: whilst green and sustainable, geothermal power plants may emit CO2. The reason for the leakage of these quantities of gases emitted from geothermal power plants aren’t due to power production because there’s no combustion. These gases are naturally present in the rock basement, minor constituents of most geothermal reservoirs. The importance of this risk varies greatly from one region of the globe to the other as well as the technology involved. Furthermore, naturally emitted CO2 is poorly regulated worldwide despite available CO2 leakage solutions exist such as binary plants (see figure below). The trend in the industry is to reach carbon neutrality thanks to binary geothermal power plants that have basically zero CO2 emissions during the production process. On a positive note, the average non-binary geothermal power plant releases between 100 and 120 grams of CO2/KWh whereas fossil fuel plants release between 1000 and 1500 grams of CO2/KWh.

The second type of environmental risk boils down to thermal well stimulation and induced seismicity. The scientific consensus around thermal well stimulation is that this is nowadays an overrated risk. It is a quick and effective way of injecting cold water into a hot geothermal well which leads to contraction of fractures and allows the permeability to be recognised. Most deep geothermal wells make use of that methods to great effect with minimal risk. Other well stimulation methods involve acid stimulation (either hydrofluoric or hydrochloric acid) of a reservoir and have to be handle with great care. Although suffering from a bad reputation, this acid gets neutralised in the basic environment of the reservoir (calcite veins and fractures) rendering it harmless whilst improving the productivity of the well. The other more dangerous aspect of situation is induced seismicity or fracking. This risk has to be taken with the most care and has the snowball effect of introducing fear in population leading to less geothermal project, thus less green development.

Figure: Geothermal plant scheme