Posts

Recap of the “Focus on Geothermal – Energy for the Weekend” Webinar

How can deep geothermal be green whilst releasing CO2 emissions into the atmosphere?

The figure below seems to indicate that deep geothermal energy is not as green as it could be assumed, in some instances reaching levels of emissions comparable to fossil fuels energy sources (gas, coal and oil). However, this graph is a simplification of what is really at stakes. First of all, geothermal emissions here are presented as life-long emission meaning resulting from exploration, drilling, building the plant, manufacturing of all the parts, operation and decommission. All but stages but operation are CO2 emissions that currently cannot be avoided because of the reliance on fossil-fuel for manufacturing any part and the value chain in general.

With regards to CO2 emissions during geothermal operation one might wonder why an energy source that does not burn fossil fuel nor carbon content still produces GHG emissions. And this is due to the CO2 content into the water reservoir from which heat is extracted. Think about a bottle of sparkling water when the lid is on, there is no bubble rising to the surface of the water and therefore no gas can expand, in short: CO2 is dissolute in the water, the system is sealed. Once you open the bottle, you witness this characteristic “pop” (due to expanding gases) followed by a rush of CO2 bubbles to the surface that then make their way to the atmosphere: the system is open.

Deep geothermal reservoirs, which are polluting, function in the very same manner as a bottle of sparkling water (albeit at much higher pressure). Drilling to a geothermal reservoir in order to harvest its heat means opening a closed system. The presence of CO2 in deep geothermal reservoirs is a naturally occurring phenomenon linked to Earth magmatic events and decay of any living organism.

Luckily, geothermal CO2 emissions during operation can be mitigated, as Hörmann Grupp presented, there are ways to make a geothermal operation 100% green. Their experiments were based on a pre-existing body of literature on carbon capture. During their tests, they further confirmed that it is possible to capture CO2 released from the brine and reinject it in the geothermal reservoir so that it never pollutes the atmosphere. Furthermore, thanks to the high pressure put on the CO2, it dissolves into the water thus not perturbing the heat exchange critical for any geothermal plant.

Experiments and new technologies are improving geothermal each day making the energy greener and more reliable than ever. It is really a breakthrough that will untroubledly help trigger a massive growth of geothermal in the energy market worldwide.

LPRC participates at “Geo-Energy Operations: Opportunities and Challenges” webinar

On the 16 December, The Welding Institute hosted its webinar titled “Geo-Energy Operations: Opportunities and Challenges Confirmation”. TWI is a global leader in technology engineering providing research and consultancy to its members.

The session was focused on one research question: “Why is geothermal still the hidden champion of energy?”. Geothermal has a very high potential on Earth. As a matter of fact, 99.6% of the planet is above 500 degrees Celsius, which begs the questions, why relying so much on oil and gas?

In addition, geothermal is a baseload power. Baseload power refers to the minimum amount of electric power needed to be supplied to the electrical grid at any given time. Day to day trends of power usage need to be met by power plants, however it is not optimal for power plants to produce the maximum needed power at all times. Earth’s warmth is not dependent on the time of the day, season or weather, it stays warm and will continue to stay warm for billions of years.

On top of potential and availability, recent developments in technology and general economies of scale have pushed geothermal competitiveness to the forefront of the energy race. Figure 1 showcases the unsubsidized cost of alternative and conventional energy sources. Two conclusions can be drawn from this graph; first, being unsubsidized levelized costs; second, although more competitive, biomass and wind have their drawbacks.

Conventional and alternative energy costs.

The ambitious vision developed for geothermal is challenged by a slow growth and implementation of geothermal worldwide. The International Geothermal Association  highlights that geothermal Growth rate of geothermal is only 3%, which is not enough to meet UNDP (United Nation Program for Development) Objective 7 – focusing on clean and affordable energy for all. To reach this global objective, the annual growth rate of geothermal (electricity, heating and cooling) needs to be 9 to 12%. Market studies suggest that the main hurdles to overcome include initial investment and public perception. Realistically, these two notions boil down to one simple concept: trust.

Investment relates to a trust into geothermal to yield positive return on investment while maximising the cost management of operations. Academic studies suggest that trust in geothermal can be raised via sharing best practices and technical development leading to cost reduction. This combination of actions enabled a noticeable growth in solar and wind power generation over the past decade.

Finally, trust is also capital when discussing public perception of geothermal energy. Best practices across the globe demonstrate that successful geothermal projects are synonymous with open and trustworthy communication with local communities. In the words of Marit Brommer, Executive Director at IGA: “both geothermal experts and non-experts shall discuss with the public about geothermal. The public shall always be engaged openly and with non-technical jargon to ensure clear communication and more importantly: dialogue. These open discussions will not only benefit the geothermal world but society as a whole.”.

Will 2021 bring new opportunities for geothermal energy?

Shallow Geothermal Days 2020: Day 3: Minutes

On the 11th December 2020 took place the third and final day of the Shallow Geothermal Days 2020. On  opportunity the focus shifted from the perks of shallow geothermal and the European potential to the incorporation of geothermal energy in the future of European Carbon neutrality.

It is no secret that the European Union is massively investing in renewable energy sources and energy storage to decarbonize its economy. The session once again proved the necessity of geothermal energy in the upcoming carbon neutral market. Not only geothermal has a huge green and economically viable potential but it also shows potential in disruptive technologies such as combined renewables sources and thermal storage. Combined renewables sources consist of two or more renewable energy sources used together to provide increased system efficiency as well as greater balance in energy supply. For example, geothermal could provide baseload energy whilst alternating energy sources could provide additional power at pick demand time.

Main themes and subtopics of the overall CHPM concept: exploration, development, operation, market. CHPM 2030 was one of the innovative projects funded under the Horizon 2020 programme where LPRC participated.

It is now important for the European Commission and its institutions to act on climate and to act quickly. To that end, the Innovation Fund has been launched to fund a number of projects to help with changing the energy panaroma. A total of 58 out of 322 proposals submitted (18%) on the 2nd December for Large-Scale projects under the Innovation Fund were geothermal energy-related (mostly heating and cooling and thermal storage). Whilst this high number of geothermal projects does not reflect the final outcome of the bid, it however shows a growing interest in the technology on the European scene.

Will Europe be able to meet its energy-related challenges for the upcoming years?

Shallow Geothermal Days 2020: Day 1: Minutes

On Friday, 4th December 2020, the European Geothermal Energy Council (EGEC) held the first day of the Shallow Geothermal Energy Days 2020. LPRC participatedin the event in light of the CROWDTHERMAL project.

The event focused solely on geothermal at shallow depth, specifically heat pumps. A geothermal heat pump (GHP) or ground source heat pump (GSHP) is a central heating and/or cooling system that transfers heat to or from the ground. The whole event highlighted the role of shallow geothermal energy within the scope of the climate transition and the EU Carbon neutrality. EGEC acknowledged that geothermal energy is not the silver bullet of the climate transition, but it has an important role to play in the next 4 decades given its inherent capabilities and the EU’s potential for low enthalpy geothermal.

Geothermal has a bright future in Europe for 2 main reasons. First, the technology is green and highly competitive when it comes to space (see the figure). Second, geothermal can follow the fluctuating demand of energy within its grid thus disabling reliance on supplemental electricity further increasing the energy efficiency of buildings whilst decreasing their operating costs. This has the spillover effect to fight energy poverty. Energy poverty is a particularly urgent matter at a time where most people have to remain at home for longer hours per day due to the ongoing COVID-19 crisis. It is important because a Just Energy Transition is an inclusive one.

Webinar: Geothermal lithium and sustainable battery production in the EU

On 24 November 2020, Luís Lopes and Gauthier Quinonez participated in the “Geothermal lithium and sustainable battery production in the EU” Webinar hosted by EGEC Geothermal. Lithium-ion batteries are vital to accelerating the decarbonisation of transport and better integrating variable renewable energies into electricity grids. However, Europe´s balance regarding lithium´s import is negative. As such, the ambitious EU climate goals may be in jeopardy when faced with the reality of the import market coupled with the rapid increase in global demand for lithium. The next couple years in raw materials policy could prove crucial for the EU long lasting pledge toward climate neutrality.

Whilst, Europe has a yet untapped lithium potential in its sub-soil, the answer to the growing demand may not come from traditional mining but from geothermal power generation. Studies suggest that Europe´s potential for geothermal is high – geothermal power could become a baseload power generation for heat and electricity on the continent.

With the advent of electric vehicles, among other greener options, lithium is becoming ever more important.

Now, recovery of mineral raw materials could be achieved thanks to geothermal too. Geothermal water (or brine) has a high concentration of minerals. Current exploratory techniques enable to target geothermal reservoirs with high flow of water and high concentration of lithium in a geothermal reservoir. Said lithium-rich brine can be taped to produce heat and/or electricity, while, in addition, minerals such as lithium can be extracted from the brine in surface installations before being reinjected into the geothermal reservoir to be-reused, thus providing a virtually infinite flow of heat and lithium. Horst Kreuter (Co-Founder & Executive-Director, Vulcan Energy Resources Limited) and James Frith (Head of Energy Storage, Bloomberg NEF) indicated that a geothermal plant combining heat and mineral extraction would have a negative emission potential during its lifetime thanks to the combination of green carbon-neutral geothermal power and the positive impact on circular that lithium can have. The future of lithium EU strategy and geothermal potential is bounded to public awareness and cohesive action at EU level noted Claudia Gamon (MEP, Renew Europe).

From LPRC´s point of view, this geothermal lithium concept is yet another positive note on the company´s past and ongoing projects focused on geothermal. LPRC was involved in the CHPM2030 project from its creation in 2016 to its closure in 2019. More recently, LPRC has started its role as WP leader for CROWDTHERMAL which aims at empowering EU citizens in geothermal. Both projects have ties with geothermal lithium and EU just transition, proving that LPRC is always at the forefront of innovation and market trends.Cr

CROWDTHERMAL meeting, 15-17 September, online

From the 15th to the 17th September 2020, the CROWDTHERMAL consortium held three successive meetings to prepare the start of the second year of the project. These meetings were successively a General Assembly (15th September), the Advisory Board meeting (16th September) and finally the 3rd Consortium meeting (17th September). The CROWDTHERMAL project aims to empower the European public to directly participate in the development of geothermal projects with the help of alternative financing schemes (crowdfunding) and social engagement tools.

During the General Assembly, the CROWDTHERMAL consortium discussed the progress made during the first year of the project and each partner presented the summary of the work performed in its respective tasks. In the first year of the project, La Palma Research Centre had a dual role in the project. First and foremost, it was part of the Communication and Dissemination Work Package together with the European Federation of Geologists. LPRC led the communication strategy on social media including two successful campaigns: the first showcasing the presentation video of the project on YouTube, while the second highlighted the best practises regarding alternative funding schemes for energy projects across Europe. Second, LPRC led the preparations for CROWDTHERMAL Work Package 4 “Integrated Deployment schemes“ starting November 2020. This Work Package aims at creating a social-media powered platform that will support the deployment of integrated development schemes for geothermal energy utilising alternative finance and community engagement tools. With regards to this Work Package, LPRC started the work on the CROWDTHERMAL sustainability plans that are aimed to facilitate the efficient market uptake of results and the sustainability of the project after the EC-funded period.

For the Advisory Board meeting, a group of experts discussed the findings and issues encountered around the project. The main topic of discussion was centred around the social acceptance of geothermal energy. Based on empirical data provided by the project on geothermal energy around Europe (WP 1, Addressing the bottlenecks of public engagement for community-based geothermal development) and regarding the place of participative finance to geothermal projects (WP 2, Community-based geothermal energy financing principles and WP3, Auxiliary and alternative pathways to risk mitigation), it became apparent that CROWDTHERMAL has indeed the unique opportunity to raise awareness about the potential of geothermal energy for climate change mitigation and to enhance citizen empowerment in energy at the same time. To that end, the project will focus more on educating the public on the advantages of geothermal energy and on the opportunity given to any investor by diverse participative financing schemes.

During the 3rd Consortium meeting, all the partners deliberated on the upcoming actions to be taken in the second year of the project. For this year, LPRC will continue to lead dissemination on social media and increase the volume of campaigns and will also lead the development of the project deployment schemes. The aim is to connect the new approaches brought forward by CROWDTHERMAL with conventional financing, public engagement and risk mitigation schemes and launch a new European mobilisation campaign with the help of social media as well as with the help of targeted conferences, workshops and by mobilising EFG Third Parties and the Altfinator Network (CFH).

Learn more about CROWDTHERMAL on the project´s website (https://www.crowdthermalproject.eu/) and follow the project´s daily activities on social media (Facebook, Twitter, LinkedIn and Instagram) @CROWDTHERMAL_EU.

CROWDTHERMAL e-meeting

Last week, on the 17 and 18 March, the CROWDTHERMAL partners held their second consortium meeting online due to the events of COVID-19 – the meeting was previously scheduled to be hosted in the Canary Islands. Due to the circumstances the consortium had to adapt and work around the impossibility of a face-to-face meeting.

This CROWDTHERMAL workshop led to outstanding preliminary results particularly for Work Packages 1, 2 and 3, which are currently running.  Work Package 1 focuses on studying the bottlenecks linked to geothermal energy. For that matter, IZES presented its preliminary results including D1.1 “International Review of Public perception studies”. Among the bottlenecks identified were: 1) trust in the technology and 2) perception of risks and legislative background. These results will later on feed into the Social License to Operate (SLO) which is at the centre of the CROWDTHERMAL project. A Social License to Operate refers to the ongoing acceptance of a company or industry’s standard business practices and operating procedures by its employees, stakeholders, and the general public.

Work Package 2 delivered an overview of the best practices in Europe regarding geothermal which will be a crucial document for any upcoming geothermal project mixing geothermal energy and crowdfunding. Work Package 3 unveiled its report on mitigation risks linked to geothermal energy. As pointed out by Work Package 1, risk mitigation is an important step to build trust in the technology and thus having an effective Social License to operate. The results of the questionnaire help to understand and to deal with risk mitigation for all case studies of CROWDTHERMAL (Spain, Iceland and Hungary). In addition, WP3 created a cluster of geothermal stakeholders in order to discuss an analysis for geothermal risk mitigation in the context of alternative financing schemes. The cluster identified a glaring lack of a pan-European exploration risk mitigation scheme.

As for WP4, which La Palma Research Centre leads, the team kickstarted the organisation of a social media powered platform that will support the deployment of integrated development schemes for geothermal energy utilising alternative finance and community engagement tools. Thanks to the synergic approach of the consortium, this platform will be launched in due time early 2021.

Stay tuned for more news regarding the CROWDTHERMAL project!

Geothermal event, Brussels

On the 4th and 5th of February, the Geothermal community gathered in Brussels to expose the state of the art of geothermal energy in Europe and discuss best practices. On this occasion, La Palma Research Centre and  the CROWDTHERMAL project were present to participate in these discussions. During these events, 3 main topics were discussed.

Firstly, the preliminary results of the GEOENVI project were unveiled. GEOENVI is an European funded project whose aim is to answer environmental concerns in terms of both impacts and risks, by first setting an adapted methodology for assessing environment impacts to the project developers, and by assessing the environmental impacts and risks of geothermal projects operational or in development in Europe. The presentation unveiled the results of on-going work: state of the art and characteristics of geothermal plants in the EU, First draft of Life Cycle Assessment and legislative background on geothermal of GEOENVI´s selected cases study (e.g. Hungary and Italy).

Secondly, the presentation of GEOENVI paved the way to environmental concerns regarding geothermal plants. For that matter, the project partners published their Life Cycle Assessment (LCA), guidelines for geothermal plants. These guidelines will be made public to help monitor all the eventual risk encountered during all four phases of a geothermal project (e.g. exploration, drilling, operation and decommission) and tools to mitigate these risks to render any geothermal operation context as safe as possible both for the environment and surrounding communities.

Finally, EGEC monitored a group discussion on the influence of the public regarding geothermal plants in the EU.

Based on an Italian case study, public acceptance towards geothermal plants has the potential to save or kill geothermal projects. Thanks to the insight of Croatian and Hungarian experts, the group reached a consensus: in order to be successful, any geothermal project has to communicate in a transparent manner with local population, show the benefits of geothermal over other sources of energy and the direct perks of having district heating thanks to geothermal. The group discussion also concluded that crowdfunding schemes should be explored to incentive local population to have a direct impact on energy production (being either electricity or heating and cooling). This latter remark is particularly relevant for the CROWDTHERMAL project. This Horizon2020 project aims to empower the European public to directly participate in the development of geothermal power projects with the help of alternative financing schemes (e.g. crowdfunding) and social engagement tools.

CHPM2030 project closure

CHPM2030 Final meeting

The CHPM2030 project partners met in Lillafüred, Hungary, for the last Consortium meeting, hosted by the coordinator, University of Miskolc. On the first day the six WP leaders presented the final outcomes and the status of deliverables. Tamas Miklovicz from LPRC presented WP6 – Roadmapping and preparation for pilots and the CHPM Roadmap and recommendations for future research projects (view Prezi slideshow here). Two brainstorming sessions were held, with similar aims: on the first, Tamás Madarász, coordinator from UNIM, facilitated a discussion regarding “Potential for follow-up; How to proceed?”, and the partners discussed each technological components and evaluated whether it shall proceed as a complete CHPM look or as individual components, considering opportunities and threats. The second session was about “Preparation for the pilots, potential funding sources, future projects”. It reviewed each work packages within the project for ideas, funding opportunities, research topics, and the continuation of CHPM technology. Project reporting and financial issues were also discussed in the afternoon.

On the second day, the partners visited the Miskolc geothermal district heating system and its infrastructure (offices, heat exchangers, production/injection wells). The host, PannErgy, introduced the geological, geothermal and engineering aspects of the system.

As of June 30th, the working period of the project officially finished, and now the team is working on the project technical and financial reporting. LPRC is responsible to provide the technical reporting of the whole of WP6.

The objectives of WP6 – Roadmapping and preparation for pilots

The CHPM technology is a low-TRL, novel and disruptive but fragile idea, that needs further nurturing and future oriented thinking. Work Package 6 represents these forward-looking efforts and aims to set the ground for subsequent pilot implementation by working on three interlinked areas: mapping convergent technology areas (linked to CHPM exploration, development, operation and market), study potential pilot areas and develop future research roadmaps.These three areas are grouped under the WP6 subtasks: Task 6.1 Horizon scanning & Visions; Task 6.2 Preparation for pilots; Task 6.3 Roadmapping. The work of WP6, including the 3 sub-tasks has been implemented thanks to the coordination and facilitation of LPRC, with the involvement of all Partners, Advisory Board members and external Experts. WP6 ran since December 2017.

Task 6.1 Horizon Scanning and Visions 

Recently, the two main activities in this task were: the 2nd round of the CHPM2030 Delphi survey and the Visioning workshop.

The Delphi survey was a 2 round, expert input based foresight tool, that was completed by 133 participants, worldwide. All Partners received and completed both rounds. Partners, especially EFG and UNIM, used their professional network and channels (website, social media, newsletters) to invite participants. The survey built on the results of the Horizon Scanning exercise, and the 2nd round incorporated the results from the 1st, so participants could re-evaluate their feedback. The survey provided insight about important, but uncertain areas in the future, while mapping convergent technology areas and emerging issues. The results have been processed by LPRC, and were used to define discussion topics and issues for theVisioning workshop.

The CHPM2030 Visioning workshop brought together Consortium partners (ISOR, VITO, KUL, UNIM, EFG, LPRC (methodology & host), BGS) and external Experts (industry, academia), from both geothermal and mineral sectors. The participant selection was based on constructive contribution in the Delphi survey, and partner’s recommendations. The one-day workshop included an introduction with presentations, two group sessions and a plenary. The group sessions focused on setting up targets related to already identified aspects of the technology (exploration, development, operation, market), based on previous results and expert judgement. The last session was about consensus building, where the facilitators presented the group’s results and an agreement was formed about the established targets. 

The results from the Horizon Scanning exercise, Delphi survey and Visioning workshop have been processed and synthesized into Deliverable 6.1 Report on Emerging and Converging technologies, related to the future of CHPM technology.

Task 6.2 Preparation for pilots

This subtask had three activities in the recent period: finalising the evaluation template, evaluating study areas, and creation of an EU spatial database on prospective locations. 

The first step for this task was the creation of the evaluation template (with the help of BGS, LNEG, IGR, SGU, UNIM, facilitated by LPRC) through online meetings, email communication, field trips and a workshop. This served as a “checklist” for important characteristics to consider when looking into CHPM potential. During the creation of the evaluation strategy, a field trip in Romania was organised by IGR (BGS, UNIM, LPRC, participated), following the previous Cornwall field trip (22-24th of May 2018) organised by BGS. A strong emphasis was given to 3D modelling and to compile all available geological information at one place for reinterpretation.

The 5 study areas from 4 countries have been evaluated according to this new strategy, investigating the CHPM potential. With the help of these study reports and the European outlook study, the following items have been clarified: 1) the information available at each area, 2) the CHPM potential based on this geoscientific data, 3) remaining gaps to be overcome in the future. The evaluated areas are Cornwall in South West England by BGS, Portuguese Iberian Pyrite Belt by LNEG, Beius Basin and Bihor Mountains in Romania by IGR, Nautanen and Kristineberg in Sweden by SGU.

The 5 study areas from 4 countries have been evaluated according to this new strategy, investigating the CHPM potential. With the help of these study reports and the European outlook study, the following items have been clarified: 1) the information available at each area, 2) the CHPM potential based on this geoscientific data, 3) remaining gaps to be overcome in the future. The evaluated areas are Cornwall in South West England by BGS, Portuguese Iberian Pyrite Belt by LNEG, Beius Basin and Bihor Mountains in Romania by IGR, Nautanen and Kristineberg in Sweden by SGU.

The British Geological Survey staff (Paul A J Lusty, Richard B Haslam, Richard A Shaw, Eimear A Deady, Paul Williamson) produced a c. 160 page detailed report on SW England. This worked with information sources reported in WP1, and also new information coming out of the ongoing geothermal investigations in SW England (e.g. the United Downs Deep Geothermal Power project, and also the GWatt project). A detailed reappraisal of the data was undertaken. In summary, the report considered the availability of geoscience information, the geological environment, geothermal characteristics, potential for deep metal enrichment, and technical, environmental, social and regulatory factors that could influence the future development of CHPM extraction technology in the region. Preliminary modelling of the Cornubian Batholith has been undertaken to improve understanding of its properties relevant to geothermal energy development. A regional model was constructed to understand the spatial relationship of key geological parameters. These data was used for the development of two site-scale models that aimed to improve understanding of the fracture network and flow pathways at the reservoir-scale. South-west England, and specifically Cornwall, is an excellent location for a pilot-scale CHPM system. 

The report on the Portuguese Iberian Pyrite Belt (~50 pages), prepared by the Portuguese National Laboratory of Energy and Geology (Elsa Cristina Ramalho, João Xavier Matos, João Gameira Carvalho), evaluated the Variscan metallogenic province, massive sulphide deposits, prospect for deep mineralization for CHPM potential. The study area report provided an update on the geoscientific data and information on SW IPB, 3D modeling (focused on the Neves-Corvo Mine) and geophysical data. The future research programmes should investigate the deeper ore deposits, with 3D/4D modeling, new deep seismics, 3D electromagnetic forward modeling and 3D inversion. The Lombador orebody, which is present at 2-3 km, has the potential to extend the lifetime of the mine with CHPM technology. Strong cooperation with the mining company that is exploiting the mine and the Portuguese government is recommended.

The report from Romania (~80 pages), developed by Geological Institute of Romania (Diana Perșa, Ștefan Marincea, Delia Dumitraș, Cătălin Simion), provided information about the CHPM potential of the Beius Basin (up and running geothermal heating system, Mg skarns, high geothermal potential), and the Bihor Mountains (granodiorite- granite plutonic body related, skarn (Fe, Bo, Bi, Mo, W), vein (Cu, Zn, Pb, sulphides). IGR has also developed a new 3D geological model, compiling all available geoscientific information of the study area. The future recommendations on this area describe new geothermal models (150 Celsius), refraction seismic for the plutonic body and mineral indications and fracture network modeling for understanding reservoir characteristics.

The Swedish report (~70 pages), delivered by Geological Survey of Sweden (Gerhard Schwarz, Benno Kathol, Magnus Ripa, Bo Thunholm, Edward P Lynch, Johan Jönberger), described 2 ore provinces: Kristineberg area (Skellefte district, volcanogenic massive sulphide deposits, Zn, Cu, Au), and Nautanen area (Northern Norrbotten district, IOCG, Cu, Fe, Au). The challenges here are the low geothermal gradient, limited information at 5-7 km depth, low permeability and hydraulic conductivity and lack of information about deep-seated fluids. It is recommended that future exploration includes identification of metal bearing formation at crustal depths (seismic velocities, electrical resistivity), 3D/4D modelling, stimulation, involvement of the mining industry and ER regional development funds, achieving public acceptance, among others.

Besides evaluating concrete study areas, the European Federation of Geologist (Domenico Marchese, Anita Demény, Isabel Fernandez) led the European outlook for prospective locations, with the help of the its National Associations that are involved in the project as Linked Third Parties (LTPs). In total there were 24 countries covered: Belgium, Czech Republic, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Netherlands, Poland, Portugal, Serbia, Slovenia, Spain, Switzerland, Ukraine, Austria, Croatia, Cyprus, Luxembourg, Slovakia, Sweden, the United Kingdom. Each National Association had 3 tasks: 1) Area selection: definition of areas most likely to be a future CHPM candidate; 2. Basic area evaluation: the task continued with the evaluation of the basic characteristics of the selected areas; 3) CHPM characteristics: this task considered a deeper investigation and data evaluation of the most likely CHPM sites. EFG and LPRC provided instructions and templates for the LTPs and organised an orientation workshop, so they were full up to date with the task. Through continuous communication with the LTPs, EFG collected the 3 reports for most countries, describing the 3 tasks mentioned above. The result is a selection of areas that has potential for future CHPM application, which has been uploaded to a publicly available spatial database: http://bit.ly/CHPMinfoplatform.

Task 6.3 Roadmapping

This subtask had three future-oriented activities related to 2030 and 2050 time horizons, building different layers of the CHPM roadmap:  1) CHPM component roadmap, 2) Preparation for future Pilots, 3) Overall concept of CHPM. The objective of Task 6.3 was to provide a timeline and direct support for the implementation of CHPM and support breakthrough research. These activities were building on the results of the Task 6.1 and 6.2 and all Partners, AB members and external Experts have been involved in this process. Each layer provided recommendations about how to advance the area and support future pilot implementation. 

The “CHPM component roadmap” provides a direct follow-up of the current technological components, by describing the state-of-the-art (2019: current state of the component, achievements, results during the project, referenced to the relevant deliverable), immediate research plan (2025: next actions, targets to continue the research on the technological component after the project), pilot research plan (2030: requirements of the component before integrating it into a CHPM pilot application), and long term objectives (2050: requirements of the component before integrating it into a CHPM commercial application). The technological components and the researchers working on the roadmap are the following: Integrated reservoir management (Szanyi János, Máté Osvald, Tamás Medgyes, University of Szeged); Metal content mobilization using mild leaching (Christopher Rochelle, BGS); Metal content mobilization with nanoparticles (Steven Mullens, VITO); High-temperature and high-pressure (HTHP) electrolytic metal recovery (Ramasamy Palaniappan, Jan Fransaer, KU Leuven, Xochitl Dominguez-Benetton, VITO); Metal recovery via gas-diffusion electrocrystallization (GDEx), (Xochitl Dominguez-Benetton, VITO); Salinity-gradient power by reverse electrodialysis (SGP-RE) (Joost Helsen, VITO); System integration (Árni Ragnarsson, ISOR).

The “Preparation for future pilots” study investigated the pathway to pilot implementation by 2030, by providing a detailed area description and future recommendations. This task was completed at 5 areas in Europe by their representing partner (Cornwall by BGS, Iberian Pyrite Belt by LNEG, Beius Basin/Bihor Mountains by IGR, Kristineberg and Nautanen by SGU). The recommendations covered 1) future exploration plans for the technological components (getting new geoscientific information, exploration methods and tools to obtain relevant information regarding the technological components (outlined in the evaluation template), 2) funding opportunities (EU funds projects, PPP, private investors, other financing) and 3) Stakeholder engagement (involved parties, end users, stakeholders, policy and regulatory issues).

 “Overall concept of CHPM” study investigated the feasibility of combining geothermal energy and mineral extraction with the use of foresight tools such as Horizon Scanning, Delphi survey and Expert workshops. The emerging issues were split into four main themes (CHPM exploration, development, operation, market). These topics and their subtopics were delivered and refined through the foresight exercises in WP6.

The Roadmapping workshop was the continuation of the Visioning workshop with the involvement of the Consortium partners  and external Experts. The main task of the group work were the validation of previously identified targets (vision) and the backcasting exercise itself (actions). After the workshop, LPRC processed the results, and presented the findings in D6.3, a document about the recommendations on targets, actions, signposts, wildcards linked to exploration, development, operation, and market, including a visualisation for each theme.

The CHPM WP leaders are going to meet one more time at the project review meeting at GeoHub, Brussels in the end of August.

Download and read our reports under the following buttons.

Constructing Social Futures conference, Turku

Constructing Social Futures – Sustainability, Responsibility and Power conference took place between 12-13th of June in Turku, Finland, bringing together the foresight community. The theme was the concept of agency in action and research for futures. ‘Constructing Futures’ emphasizes opportunities and challenges related to the need for building and critically evaluating capabilities necessary for sustainable futures. This conference created a cross-disciplinary platform where participants could meet, share, and discuss new ideas concerning social futures. These two days consisted of keynote lectures, parallel sessions, participatory workshops and chaired poster session, from multidisciplinary topics.

The fist keynote presentation was held by Dr. Ivana Milojević (Metafuture) about the Power for, against, with and within: Futures studies as practice. Ivana’s set the tone for the conference with her passionate talk addressing two central questions: “Can futures studies, as a practice, make a difference?”, and “To what extent are futures being constructed through participation that reflects moral agency and leads to better futures for all?”. The second keynote presentation was given by Professor Ullrich Kockel (Heriot-Watt University Edinburgh) about the Heritage Futures: Tradition, Gain, Sustainability. The afternoon continued with 7 paralel sessions for ~15 minute presentations on topics such as Combining corporate foresight with corporate social responsibility and Citizen science, power, responsibility and foresight.

LPRC was represented by Tamas Miklovicz, who gave a presentation about the Application of foresight methods in the research of a disruptive geothermal technology (CHPM), in the session on Foresight activities and their effect on sustainability transitions. The presentation was focusing on the methodological aspect of how to make use of foresight tools for such a challenging technology. The presentation was well received and participants appreciated the robust methodology behind the CHPM roadmapping process. You can have a look at Tamas’s presentation in  the video below:

The second day continued with sessions and workshops on topics like Back to the futures we want: Envisioning and backcasting for Sustainable futures, and Utopias to combat futures by-negation, and The roles of futures studies in the negotiation of values and desired futures. The event was concluded with two keynote presentations. First Professor Keri Facer talked about All our futures? Climate change, democracy and missing public spaces. The second was given by Professor Ted Fuller On responsible futures: What can we do, what should we do?

All keynote speakers were donated a ~3 hectare peatland in Finland. Peatlands are the largest natural terrestrial carbon store, and among the most important ecosystems on Earth*, also helping us to reduce carbon footprint of the anthropocene.

You can read the Book of Abstract here and you may rediscover the event on Twitter following the #futuresconference2019.

The Futures Conference 2019 was very inspiring! Many great ideas have been shared, discussed and agreed about building a more sustainable future. After the conference, arriving home, the real question remains: are we going to plant these seeds into our everyday life to nurture a sustainable future? We all hope that we do indeed, throughout our everyday decisions.

*https://www.iucn.org/resources/issues-briefs/peatlands-and-climate-change